
Name: Date: Period: Seat #:

A heating curve for ice at -35°C being converted to steam at 128°C:

[2] Label the following on the graph above:	Write the formula used:
Warming	q =
Melting	q =
Vaporizing	q =

[3] What are the following values for water include both J/g and KJ/mol (include units):					
H _{fus} =	J/g	kJ/mol			
$H_{\text{vap}} =$	J/g	kJ/mol			

[4] How many calories are needed to convert 312.0g of ice at -35.0°C to liquid water at 25.0°C: (HINT: Use the graph above to determine the formula(s) needed). 38220 cal

[5] How many joules (J) of energy are released when 6.80E₃ g of steam at 100.0°C are completely frozen to ice at 0.0°C: 2.05E₇J

[6] How much energy (in J) is required to completely melt 205.0 mol of ice at 0.0°C: 1.235E ₆ J				

Substance	$ \begin{pmatrix} C \text{ (solid)} \\ \left(\frac{J}{g \cdot K}\right) \end{pmatrix} $	M.P. (°ℂ)	$\frac{\Delta H_{\text{fus}}}{\left(\frac{J}{g}\right)}$	$ \begin{pmatrix} C \text{ (liquid)} \\ \left(\frac{J}{g \cdot K}\right) \end{pmatrix} $	B.P. (°C)	$\left(\frac{J}{g}\right)$	$ \begin{pmatrix} C \text{ (gas)} \\ \left(\frac{J}{g \cdot K}\right) \end{pmatrix} $
K	0.560	62	61.4	1.070	760	2025	0.671
Hg		-39	11	0.138	357	294	0.104

How much heat is needed to raise the temperature of 85 g of potassium from 25° C to 2,500°C? 3.41Es J					